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Abstract

In this paper, we carry out the extension of the ADER approach to multidimensional non-linear systems of conser-

vation laws. We implement non-linear schemes of up to fourth order of accuracy in both time and space. Numerical

results for the compressible Euler equations illustrate the very high order of accuracy and non-oscillatory properties

of the new schemes. Compared to the state-of-art finite-volume WENO schemes the ADER schemes are faster, more

accurate, need less computer memory and have no theoretical accuracy barrier.
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1. Introduction

The class of Godunov-type methods for solving numerically hyperbolic conservation laws is often re-

garded as one of the most successful. The original first-order scheme of Godunov [5–7] uses the self-similar

solution of the local Riemann problem with piece-wise constant initial data to compute the upwind numer-

ical flux. The extension to second order of accuracy in time and space can be carried out, amongst other

ways, by using a non-oscillatory piece-wise linear reconstruction of data from cell averages [12,13,40]

and solving the generalised Riemann problem at cell interface position. The generalisation of the Riemann

problem here consists of using the initial condition in the form of two linear reconstruction polynomials
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instead of the piece-wise constant states, as done in the first-order scheme. The corresponding generalised

Riemann problem (GRP) schemes in one space dimension have been constructed by various authors, e.g.

[2,14,16].

In general, the approximate solution of the generalised Riemann problem, as given in [15] for one-dimen-

sional Euler equations of a gamma-law gas, is quite cumbersome and may be not possible to obtain for
more complicated hyperbolic systems, e.g. MHD equations. Therefore, the GRP-type methods as such

are not competitive with other second-order accurate Godunov methods. A major simplification to the

GRP methodology comes with the modified GRP (MGRP) scheme, proposed in [29]. In this scheme,

the generalised Riemann problem is not solved directly. Instead, it is replaced by two conventional Rie-

mann problems, namely one non-linear problem for the leading term for state variables and one linear

problem for gradients of state variables. Since approximate-state Riemann solvers are available for most

of the hyperbolic conservation laws of interest, the MGRP scheme is much more practical than the original

GRP schemes [2,14,16].
The ADER approach [31,32] can be regarded as a further development of the MGRP scheme in that it

breaks the barrier of second-order accuracy and allows the construction of arbitrarily high-order accurate

schemes, both in time and space. To evaluate the numerical flux in the ADER approach one solves the gen-

eralised Riemann problem with initial condition consisting of two arbitrary but smooth functions using a

semi-analytical method, reported in [33]. The approximate solution is given as a Taylor time expansion at

the cell interface position up to any order of time accuracy 1 6 r < 1. The extension of original ADER

schemes [32] to the one-dimensional non-linear systems, using the method [33] has been reported in

[26,34]. See also [25,27]. In multiple space dimensions the non-linear ADER schemes as applied to scalar
non-linear equations have been constructed in [11,35] for both structured and unstructured meshes. We also

mention [20,21] where the authors consider linear (fixed-stencil) ADER schemes for two-dimensional linear

homogeneous systems with constant coefficients. So far the approach has not been applicable to multidi-

mensional non-linear systems.

The motivation of this paper is to carry out the extension of one-dimensional non-oscillatory ADER

schemes [26] to multidimensional non-linear systems of conservation laws. We present numerical results

of schemes of third and fourth order of time accuracy as applied to the compressible Euler equations of

gas dynamics in two and three space dimensions. These results illustrate the very high order of accuracy
of the schemes as well as their essentially non-oscillatory behaviour. When compared with the state-of-

art finite-volume WENO scheme of Shi et al. [22], the ADER schemes are faster, more accurate, need less

computer memory and have no theoretical accuracy barrier.

The rest of the paper is organized as follows. In Section 2, we very briefly review the ADER approach as

applied to one-dimensional non-linear systems. Extension to three-dimensional non-linear systems is car-

ried out in Section 3. Numerical results are provided in Section 4 and conclusions are drawn in Section 5.
2. The numerical scheme in one space dimension

Consider a hyperbolic system in conservation form given by
otQþ oxFðQÞ ¼ 0 ð1Þ

along with initial and boundary conditions. Here, Q is the vector of unknown conservative variables

and F(Q) is the physical flux vector. Integrating (1) over a space-time control volume in x � t space
[xi� 1/2,xi+1/2] · [tn, tn+1] of dimensions Dx = xi+1/2 � xi� 1/2, Dt = tn+1 � tn, we obtain the following

one-step finite-volume scheme:
Qnþ1
i ¼ Qn

i þ
Dt
Dx

ðFi�1=2 � Fiþ1=2Þ: ð2Þ
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Here, Qn
i is the cell average of the solution at time level tn, Fi+1/2 is the time average of the physical flux at

cell interface xi+1/2:
Qn
i ¼

1

Dx

Z xiþ1=2

xi�1=2

Qðx,tnÞdx, Fiþ1=2 ¼
Z tnþ1

tn
FðQðxiþ1=2,tÞÞdt: ð3Þ
The first step in the ADER flux evaluation algorithm is the reconstruction of point-wise values of the

solution from cell averages at t = tn via high-order polynomials. To circumvent the Godunov theorem

[5] and design non-oscillatory schemes we use the non-linear (solution-adaptive) weighted essentially

non-oscillatory (WENO) reconstruction, see [10,1,22] and references therein. We remark that for the rth-

order accurate scheme (in time and space) the reconstruction polynomials must be of (r � 1)th order,

e.g. for third-order schemes, we use piece-wise parabolic reconstruction and so on.

After the reconstruction step the conservative variables in each cell are represented by vectors pi(x) of

polynomials. Then at each cell interface we can pose the following generalised Riemann problem:
PDE : otQþ oxFðQÞ ¼ 0,

IC : Qðx,0Þ ¼
QLðxÞ ¼ piðxÞ, x < xiþ1=2,

QRðxÞ ¼ piþ1ðxÞ, x > xiþ1=2:

� ð4Þ
We find an approximate solution for the interface state Q(xi+1/2,s), where s is local time s = t � tn, using a
semi-analytical method developed in [33]. For rth order of accuracy the method reduces the difficulty of

solving the generalised Riemann problem (4) to that of solving a sequence of conventional Riemann prob-

lems, namely one non-linear and (r � 1) linear problems, and proceeds as follows. First, we write a trun-

cated Taylor expansion of the interface state in time
Qðxiþ1=2,sÞ ¼ Qðxiþ1=2,0þÞ þ
Xr�1

k¼1

o
k

otk
Qðx,tÞðxiþ1=2,0þÞ

� �
sk

k!
: ð5Þ
The leading termQ(xi+1/2,0+) accounts for the first-instant interaction of the boundary extrapolated values

QL(xi+1/2) and QR(xi+1/2) and is the Godunov state [5] of the conventional (piece-wise constant data) Rie-

mann problem:
otQþ oxFðQÞ ¼ 0,

Qðx,0Þ ¼
QLðxiþ1=2Þ if x < xiþ1=2,

QRðxiþ1=2Þ if x > xiþ1=2:

( ð6Þ
A key ingredient here is the availability of an exact or approximate Riemann solver to provide this first

term in the expansion.
The higher order terms are evaluated in two steps. First, we express all time derivatives via spatial deriv-

atives by means of the Cauchy–Kowalewski procedure. For system (1) the procedure yields the following

expressions:
otQ ¼ � oF

oQ

� �
oxQ,

otxQ ¼ � o2F

oQ2

� �
ðoxQÞ2 � oF

oQ

� �
oxxQ,

ottQ ¼ � o2F

oQ2

� �
otQoxQ� oF

oQ

� �
oxtQ,

ð7Þ
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and so on. In practice, we find it more convenient to carry out (7) in componentwise manner rather than in

the matrix form. The procedure can be easily coded with the aid of algebraic manipulators, such as MAPLE

or Mathematica.

Next we derive evolution equations for the spatial derivatives by differentiating the governing Eq. (1) and

the reconstruction polynomials QL, QR with respect to x. In general, for non-linear systems the evolution
equation for each spatial derivative
QðkÞ � ok

oxk
Q, 1 6 k 6 r � 1
is in non-conservative form and contains a non-linear source term H depending on derivatives of lower

order l = 1, . . .,k � 1 as well as Q(x, t) itself:
otðQðkÞÞ þ AoxðQðkÞÞ ¼ HðQ,Qð1Þ,Qð2Þ, . . . ,Qðk�1ÞÞ: ð8Þ

For the Taylor expansion (5), we need the solution of (8) for each k = 1, . . ., r � 1 to be substituted in (7) at

interface position x = xi+1/2 at time s = 0+. Therefore, we can neglect the influence of the source term,
which comes into effect for s > 0 only. Additionally, we linearize the equation around the leading term

Q(xi+1/2, 0+) of the time expansion (5) and replace the piece-wise polynomial initial data by left and right

boundary extrapolated values of spatial derivatives at xi+1/2. The described simplifications result in the fol-

lowing linear conventional Riemann problem for the spatial derivatives Q(k):
otðQðkÞÞ þ Aiþ1=2oxðQðkÞÞ ¼ 0, Aiþ1=2 ¼ AðQðxiþ1=2,0þÞÞ,

QðkÞðx,0Þ ¼
ok

oxk QLðxiþ1=2Þ, x < xiþ1=2,

ok

oxk QRðxiþ1=2Þ, x > xiþ1=2:

8<
:

ð9Þ
Note that the coefficient matrix Ai+1/2 is the same for all derivatives and has to be evaluated only once. If

we denote by QðkÞ
� ððx� xiþ1=2Þ=sÞ the self-similar solution of (9), then the spatial derivatives Q(k) in (9) are

computed as QðkÞ ¼ QðkÞ
� ð0Þ, the Godunov state.

Finally, having found all spatial derivatives we form the Taylor expansion (5). Two options now exist to

evaluate the numerical flux. The first option is the state-expansion ADER [26], in which the approximate

state (5) is inserted into the definition of the numerical flux (3) and then an appropriate rth-order accurate

quadrature is used for time integration:
Fiþ1=2 ¼
XKl

l¼0

FðQðxiþ1=2,clDtÞÞxl: ð10Þ
Here, cj and xj are properly scaled nodes and weights of the rule and Kl is the number of nodes.

The second option to evaluate the numerical flux is the flux-expansion ADER [34,25], in which we seek a

truncated Taylor time expansion of the physical flux at xi+1/2:
Fðxiþ1=2,sÞ ¼ Fðxiþ1=2,0þÞ þ
Xr�1

k¼1

o
k

otk
Fðxiþ1=2,0þÞ

� �
sk

k!
: ð11Þ
From (3) and (11), the numerical flux is now given by
Fiþ1=2 ¼ Fðxiþ1=2,0þÞ þ
Xr�1

k¼1

ok

otk
Fðxiþ1=2,0þÞ

� �
Dtk

ðk þ 1Þ! : ð12Þ
The leading term F(xi+1/2, 0+) accounts for the first interaction of left and right boundary extrapolated val-
ues and is computed as a certain monotone flux of the conventional Riemann problem (6) for the leading
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term of the state expansion (5). Following [34], the remaining higher order time derivatives of the flux in

(12) are expressed via time derivatives of the intercell state Q(xi+1/2, 0+), which are known from (5). No

numerical quadrature is then required to compute the numerical flux.

The solution is advanced in time by updating the cell averages according to the one-step formula (2).
3. Extension to several space dimensions

Consider the following three-dimensional non-linear system of conservation laws:
otQþ oxFðQÞ þ oyGðQÞ þ ozHðQÞ ¼ 0: ð13Þ

Integration of (13) over a space-time control volume of dimensions Dx = xi+1/2 � xi� 1/2, Dy = yj+1/2

� yj� 1/2, Dz = zk+1/2 � zk� 1/2, Dt = tn+1 � tn produces the following one-step finite-volume scheme:
Qnþ1
ijk ¼ Qn

ijk þ
Dt
Dx

Fi�1=2,jk � Fiþ1=2,jk
� �

þ Dt
Dy

Gi,j�1=2,k �Gi,jþ1=2,k
� �

þ Dt
Dz

Hij,k�1=2 �Hij,kþ1=2

� �
, ð14Þ
where Qn
ijk is the cell average of the solution at time level tn:
Qn
ijk ¼

1

Dx
1

Dy
1

Dz

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

Qðx,y,z,tnÞdzdy dx, ð15Þ
and Fi+1/2,jk, Gi,j+1/2,k and Hij,k + 1/2 are the space-time averages of the physical fluxes at the cell interfaces:
Fiþ1=2,jk ¼
1

Dt
1

Dy
1

Dz

Z yjþ1=2

yj�1=2

Z zkþ1=2

zk�1=2

Z tnþ1

tn
FðQðxiþ1=2,y,z,tÞÞdtdzdy,

Gi,jþ1=2,k ¼
1

Dt
1

Dx
1

Dz

Z xiþ1=2

xi�1=2

Z zkþ1=2

zk�1=2

Z tnþ1

tn
GðQðx,yjþ1=2,z,tÞÞdtdzdx,

Hij,kþ1=2 ¼
1

Dt
1

Dx
1

Dy

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

Z tnþ1

tn
HðQðx,y,zkþ1=2,tÞÞdtdy dx:

ð16Þ
While describing the procedure to evaluate the numerical flux in three space dimensions we concentrate

on Fi+1/2,jk; the expressions for Gi,j+1/2,k and Hij,k + 1/2 are obtained in an entirely analogous manner.
The evaluation of the ADER numerical flux Fi+1/2,jk consists of the following steps. First, we discretize

the spatial integrals over the cell faces in (16) using a tensor product of a suitable Gaussian numerical quad-

rature. The expression for the numerical flux in the x coordinate direction then reads
Fiþ1=2,jk ¼
XN
a¼1

XN
b¼1

1

Dt

Z tnþ1

tn
FðQðxiþ1=2,ya,zb,tÞÞdt

 !
KbKa, ð17Þ
where ya, zb are the integration points over the cell face [yj� 1/2,yj+1/2] · [zk� 1/2,zk+1/2] and Ka, Kb are the
weights. Normally, we use the two-point Gaussian quadrature for third and fourth-order schemes and a

higher-order Gaussian quadrature for fifth and higher order schemes.

Next we reconstruct the point-wise values of the solution and all derivatives up to order r � 1 from cell

averages at the Gaussian integration points (xi+1/2,ya,zb). To avoid spurios oscillations, a non-linear solu-

tion adaptive reconstruction must be used. In this paper, we use the dimension-by-dimension WENO

reconstruction. For general information on reconstruction in the context of the two-dimensional ENO

and WENO schemes see [3,22]. Extension to three space dimensions in the context of ADER schemes

can be found in [35].
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After the reconstruction is carried out for each Gaussian integration point (ya,zb) at the cell face we pose

the generalised Riemann problem (4) in the x-coordinate direction (normal to the cell boundary) and obtain

a high order approximation to Q(xi+1/2,ya,zb,s). All steps of the solution procedure remain essentially as in

the one-dimensional case. We write Taylor series expansion in time
Qðxiþ1=2,ya,zb,sÞ ¼ Qðxiþ1=2,ya,zb,0þÞ þ
Xr�1

k¼1

ok

otk
Qðxiþ1=2,ya,zb,0þÞ

� �
sk

k!
: ð18Þ
The leading termQ(xi+1/2,ya,zb, 0+) is the Godunov state of the conventional augmented Riemann problem
otQþ oxFðQÞ ¼ 0,

Qðx,0Þ ¼
QLðxiþ1=2,ya,zbÞ if x < xiþ1=2,

QRðxiþ1=2,ya,zbÞ if x > xiþ1=2:

� ð19Þ
As in the one-dimensional case, an exact or approximate Riemann solver is a necessary ingredient here to

provide this first term in the expansion.

To evaluate higher-order terms we first express all time derivatives by spatial derivatives by means of the

Cauchy–Kowalewski procedure. We note that this procedure will now involve mixed x, y and z derivatives
up to order r � 1. For the system in conservation form (13) we have
otQ ¼ � oF

oQ

� �
oxQ� oG

oQ

� �
oyQ� oH

oQ

� �
ozQ;

otxQ ¼ � o
2F

oQ2

� �
ðoxQÞ2 � oF

oQ

� �
oxxQ� o

2G

oQ2

� �
ðoxQÞðoyQÞ � oG

oQ

� �
oxyQ

� o2H

oQ2

� �
ðoxQÞðozQÞ � oH

oQ

� �
oxzQ;

otyQ ¼ � o2F

oQ2

� �
ðoyQÞðoxQÞ � oF

oQ

� �
oxyQ� o2G

oQ2

� �
ðoyQÞ2 � oG

oQ

� �
oyyQ

� o
2H

oQ2

� �
ðoyQÞðozQÞ � oH

oQ

� �
oyzQ;

otzQ ¼ � o2F

oQ2

� �
ðozQÞðoxQÞ � oF

oQ

� �
oxzQ� o2G

oQ2

� �
ðozQÞðoyQÞ � oG

oQ

� �
oyzQ

� o2H

oQ2

� �
ðozQÞ2 � oH

oQ

� �
ozzQ;

ottQ ¼ � o
2F

oQ2

� �
ðotQÞðoxQÞ � oF

oQ

� �
otxQ� o

2G

oQ2

� �
ðotQÞðoyQÞ � oG

oQ

� �
otyQ

� o2H

oQ2

� �
ðotQÞðozQÞ � oH

oQ

� �
otzQ;

ð20Þ
and so on. An optimized FORTRAN or C output can be produced using algebraic manipulators and then

can be directly included into the actual code.

In an entirely analogous way to the one-dimensional case, we can derive non-homogeneous evolution

equations and the initial conditions for each spatial derivative
QðmþnþlÞ � omþnþl

oxmoynozl
Q, 1 6 mþ nþ l 6 r � 1
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by differentiating the governing Eq. (13) and the reconstruction polynomials QL, QR with respect to x. The

evolution equations have exactly the same form as (8) with a difference. The right hand side will now depend

not only on lower order x derivatives but also onmixed derivatives. For the Taylor expansion (18) we need the

values at x = xi+1/2, s = 0. Therefore, entirely analogous to the one-dimensional case, we neglect the source

term, linearize the equation around the leading termof the time expansion (18) and replace the piece-wise poly-
nomial initial data by the left and right extrapolated values. The spatial derivatives at (x � xi+1/2)/s = 0 are

then the Godunov states of the following linearised Riemann problem with piece-wise constant initial data:
ot Q
ðmþnþlÞ� �

þ Aiþ1=2ox QðmþnþlÞ� �
¼ 0, Aiþ1=2 ¼ AðQðxiþ1=2,ya,zb,0þÞÞ,

QðmþnþlÞ ¼
omþnþl

oxmoynozl QLðxiþ1=2,ya,zbÞ, x < xiþ1=2,

omþnþl

oxmoynozl QRðxiþ1=2,ya,zbÞ, x > xiþ1=2:

8<
: ð21Þ
After solving (21) for 1 6 m + n + l 6 r � 1, we form the Taylor expansion (18) for the interface state at the
Gaussian integration point (xi+1/2,ya,zb). The flux of the state-expansion ADER scheme is obtained by

inserting the approximate state (18) into formula (17) and using an appropriate rth-order accurate quad-

rature for time integration:
Fiþ1=2,jk ¼
XN
a¼1

XN
b¼1

XN
l¼1

FðQðxiþ1=2,ya,zb,slÞÞKl

 !
KbKa: ð22Þ
For the flux expansion ADER schemes we write Taylor time expansion of the physical flux at each point
(xi+1/2,ya,zb)
Fðxiþ1=2,ya,zb,sÞ ¼ Fðxiþ1=2,ya,zb,0þÞ þ
Xr�1

k¼1

ok

otk
Fðxiþ1=2,ya,zb,0þÞ

� �
sk

k!
: ð23Þ
From (16) and (23), the numerical flux is given by
Fiþ1=2,jk ¼
XN
a¼1

XN
b¼1

Fðxiþ1=2,ya,zb,0þÞ þ
Xr�1

k¼1

o
k

otk
Fðxiþ1=2,ya,zb,0þÞ

� �
Dtk

ðk þ 1Þ!

 !
KbKa: ð24Þ
Entirely analogous to the one-dimensional case, the leading term F(xi+1/2,ya,zb, 0+) is computed from (19)

using a monotone upwind flux. The remaining higher order time derivatives of the flux in (23) are expressed

via time derivatives of the intercell state Q(xi+1/2,ya,zb,s) which are given by the Taylor expansion (18).

The solution is advanced in time by updating the cell averages according to the one-step formula (14).
4. Numerical results

In this section, we present numerical results of the ADER schemes as applied to the multidimensional

compressible Euler equations of the form (13) with
Q ¼

q

qu

qv

qw

E

0
BBBBBB@

1
CCCCCCA
, F ¼ Quþ

0

p

0

0

pu

0
BBBBBB@

1
CCCCCCA
, G ¼ Qvþ

0

0

p

0

pv

0
BBBBBB@

1
CCCCCCA
, H ¼ Qwþ

0

0

0

p

pw

0
BBBBBB@

1
CCCCCCA
,

p ¼ ðc� 1Þ E � 1

2
q u2 þ v2 þ w2
� �� �

:

ð25Þ



722 V.A. Titarev, E.F. Toro / Journal of Computational Physics 204 (2005) 715–736
Here, q, u, v, w, p and E are density, components of velocity in the x, y and z coordinate directions, pressure

and total energy, respectively; c is the ratio of specific heats. We use c = 1.4 throughout.

The state-expansion ADER schemes need the Godunov state of the Riemann problems (6) and (19)

to provide the leading term of the state expansions (5) and (18), respectively. In general, any exact or

approximate Riemann solver can be used for this purpose. In this paper, we choose the adaptive Rie-
mann solver described of Section 9.5.2 of [30]. We remark that the computational cost of the Riemann

solver is very small compared to the overall cost of the scheme, typically around 5%. Other parts of

the schemes are considerably more expensive, e.g. the reconstruction procedure takes around 60% of

the computing time.

The flux-expansion ADER schemes additionally need a first-order upwind flux to provide the leading

term of the flux expansions (12) and (24). We have successfully used a number of upwind fluxes, including

the Rusanov flux [19], the Roe flux [18], the HLL flux [9], the HLLC flux [37] and a very recent multistage

MUSTA flux [36]. For general background on fluxes see also [30]. However, the aim of this paper is not to
assess the performance of different fluxes in the ADER framework. Rather we would like to illustrate the

idea of the flux-expansion ADER schemes. Therefore, we present results for only two numerical fluxes, the

HLL flux [9] and HLLC flux [37]. The HLL flux assumes a two-wave structure of the Riemann problem

solution with wave speeds SL and SR. The HLLC fluxes uses a more accurate three-wave structure, which

includes the middle wave with the speed S*. These wave speeds must be estimated. We use the pressure-

velocity estimates of Section 10.5.2 of [30].

For both the state-expansion and the flux-expansion variants of the ADER approach we use the fourth-

order Simpson rule for time integration in (10) and (22).
We denote the state-expansion ADER schemes of third and fourth orders of time accuracy, using the

adaptive Riemann solver from [30], as ADER3-AD and ADER4-AD, respectively. The corresponding flux

expansion ADER schemes are denoted as ADER3-HLLC, ADER4-HLLC (the HLLC flux is used) and

ADER3-HLL and ADER4-HLL (the HLL flux is used).

For comparisons in our numerical experiments we also run the dimension-by-dimension version of

the finite-volume WENO scheme of Shi, Hu and Shu [22]. The WENO scheme uses the piece-wise

parabolic (r = 3) reconstruction, three-point (sixth order) Gaussian rule for flux integration, the

Rusanov flux [19] as a building block and the third-order TVD Runge–Kutta method for time
discretization [23]. Therefore, it is formally fifth-order accurate in space and third-order accurate in

time.

In our computations we evaluate a stable time step Dt according to
Dt ¼ Ccfl �min
ijk

Dx
jSn,x

ijk j
,
Dy
jSn,y

ijk j
,
Dz
jSn,z

ijk j

 !
: ð26Þ
Here, Sn,d
ijk is the speed of the fastest wave present at time level n travelling in the d direction, with d = x,y,z.

Ccfl is the CFL number and is chosen according to the linear stability condition of the scheme, namely

0 < Ccfl 6 1/2 in two space dimensions and 0 < Ccfl 6 1/3 in three space dimensions. We run all convergence

tests with a fixed Courant number close to the stability limit. Usually we use Ccfl = 0.45 in two space dimen-

sions and Ccfl = 0.3 in three space dimensions.

We remark that the ADER3-AD, ADER3-HLLC and ADER3-HLL schemes of the present paper
and the WENO scheme [22] use the same piece-wise parabolic (r = 3) reconstruction. Therefore, their

comparison is indeed justified. The fourth-order ADER4 and ADER4-HLL schemes use more accurate

piece-wise cubic (r = 4) WENO reconstruction; therefore their comparison with other schemes must be

qualified.

We assess the performance of our methods as applied to the three test problems, as detailed in the fol-

lowing sections.
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4.1. Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations in the square domain [�5:5] · [�5:5] with periodic

boundary conditions. The initial condition corresponds to a smooth vortex placed at the origin and is de-

fined as the following isentropic perturbation to the uniform flow of unit values of primitive variables [1]:
Table

Densit

Metho

ADER

ADER

ADER

WENO

ADER
u ¼ 1� e
2p

e
1
2
ð1�r2Þy, v ¼ 1þ e

2p
e
1
2
ð1�r2Þx, T ¼ 1� ðc� 1Þe2

8cp2
eð1�r2Þ,

p
qc

¼ 1, ð27Þ
where r2 = x2 + y2 and the vortex strength is e = 5. The exact solution is a vortex movement with a constant

velocity at 45� to the Cartesian mesh lines. We compute the numerical solution at the output time t = 10 for
which the vortex returns to the initial position. We use Ccfl = 0.45 for all runs.

Table 1 shows the convergence study for the ADER and WENO schemes with the piece-wise parabolic

(r = 3) reconstruction. We present errors and convergence rates in L1 and L1 norm for cell averages of den-

sity. We observe that the ADER schemes achieve approximately sixth and fifth orders of accuracy in L1
and L1 norms, respectively. It is interesting to note that these orders of accuracy actually exceed the fourth-

order accuracy of the two-point Gaussian rule used for flux integration. The WENO scheme is less accurate

than the ADER schemes by a factor of two on coarse meshes and by a factor of three on the finest mesh.

Table 2 shows the convergence study for the fourth-order ADER schemes with the higher-order piece-
wise cubic (r = 4) reconstruction. We observe approximately sixth order of accuracy in both norms. For a

fixed resolution the fourth-order ADER schemes are more accurate than the schemes of Table 1 by a factor

of ten.

For this problem approximately fifth order of accuracy is achieved by the ADER schemes which is

higher than expected from the third and fourth order time descretizations used. This is due to the fact that

this problem, for the given output time, is more sensitive to spatial accuracy than time discretization. We

also note, that the accuracy of the ADER-AD and ADER-HLLC schemes of the same order is very similar

whereas the ADER-HLL schemes are slightly less accurate, which is due to the use of the less accurate HLL
Riemann solver.
1

y convergence study for the vortex evolution problem (27) at the output time t = 10

d Mesh L1 error L1 order L1 error L1 order

3-AD 25 · 25 5.94 · 10�2 3.43 · 10�1

50 · 50 8.90 · 10�3 2.74 2.50 · 10�2 3.78

100 · 100 2.62 · 10�4 5.08 8.83 · 10�4 4.82

200 · 200 4.55 · 10�6 5.85 3.58 · 10�5 4.62

3-HLLC 25 · 25 5.94 · 10�2 3.43 · 10�1

50 · 50 8.94 · 10�3 2.73 2.50 · 10�2 3.78

100 · 100 2.63 · 10�4 5.09 8.83 · 10�4 4.82

200 · 200 4.68 · 10�6 5.81 3.61 · 10�5 4.61

3-HLL 25 · 25 6.08 · 10�2 3.87 · 10�1

50 · 50 9.32 · 10�3 2.71 2.64 · 10�2 3.88

100 · 100 2.86 · 10�4 5.02 9.97 · 10�3 4.73

200 · 200 4.90 · 10�6 5.87 3.79 · 10�5 4.72

[22] 25 · 25 1.04 · 10�1 6.92 · 10�1

50 · 50 1.38 · 10�2 2.91 4.58 · 10�2 3.92

100 · 100 4.60 · 10�4 4.91 2.33 · 10�3 4.30

200 · 200 1.67 · 10�5 4.78 9.05 · 10�5 4.68

and WENO schemes with piece-wise parabolic (r = 3) reconstruction.



Table 2

Density convergence study for the vortex evolution problem (27) at the output time t = 10

Method Mesh L1 error L1 order L1 error L1 order

ADER4-AD 25 · 25 1.96 · 10�2 1.15 · 10�1

50 · 50 1.59 · 10�3 3.62 5.43 · 10�3 4.40

100 · 100 2.52 · 10�5 5.98 1.29 · 10�4 5.39

200 · 200 4.14 · 10�7 5.93 1.81 · 10�6 6.16

ADER4-HLLC 25 · 25 1.96 · 10�2 1.15 · 10�1

50 · 50 1.60 · 10�3 3.62 5.43 · 10�3 4.40

100 · 100 2.52 · 10�5 5.98 1.29 · 10�4 5.40

200 · 200 4.14 · 10�7 5.93 1.80 · 10�6 6.16

ADER4-HLL 25 · 25 1.90 · 10�2 1.15 · 10�1

50 · 50 1.61 · 10�3 3.56 5.68 · 10�3 4.34

100 · 100 2.79 · 10�5 5.85 1.44 · 10�4 5.31

200 · 200 4.49 · 10�7 5.96 1.95 · 10�6 6.20

ADER schemes with piece-wise cubic (r = 4) reconstruction.
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4.2. Double mach reflection of a strong shock

The setup of the problem is as follows [38]. The domain of interest is a region of 4 units long and 1 unit

wide. At the initial time t = 0 a right-moving shock wave of shock Mach number equal to 10 is set up. The

shock front makes an angle of 60� with the x-axis at x = 1/6. Ahead of the shock the gas is at rest with

q = 1.4, p = 1. The following boundary conditions are used. The in-flow boundary condition is applied

at the left vertical boundary x = 0 and transmissive boundary conditions are used at the right vertical

boundary x = 4. At the bottom boundary y = 0 the exact post-shock values of all gas parameters are set
for 0 6 x 6 1/6 whereas for 1/6 < x 6 4 reflective boundary conditions are used. The exact motion of the

Mach 10 shock is prescribed at the top boundary y = 1. The solution is studied for the output time

t = 1/5.

Figs. 1–6 show numerical results of the third-order ADER3-AD, ADER3-HLLC and ADER3-HLL

schemes for three meshes: 480 · 120, 960 · 240 and 1920 · 480 cells. The corresponding results of the

WENO scheme can be found in Fig. 3.4 of [22] and are not shown here. Comparing our results with those

in the existing literature [4,8,10,22,38] it is seen that ADER schemes produce the flow pattern generally ac-

cepted at present as correct, on all meshes. All discontinuities are well resolved and correctly positioned.
Comparing our new schemes, ADER3-AD, ADER3-HLLC, ADER3-HLL, and the WENO scheme

[22], we see that the main difference occurs in the resolution of the slip surfaces and the associated jet. This

is partly explained by the numerical flux. The adaptive Riemann solver used to compute the leading term of

the state expansion (18) in the ADER3 scheme and the HLLC Riemann solver used for the leading term of

the flux expansion (24) in the ADER3-HLLC scheme recognize all these waves. In fact, the numerical re-

sults of the ADER3-AD and ADER3-HLLC schemes are very similar, almost identical. The HLL and the

Rusanov fluxes used in the ADER3-HLL and the WENO schemes ignore the internal structure of the Rie-

mann problem solution and thus smear the slip surfaces more significantly [37].
Additionally, we observe that all ADER schemes produce much sharper profiles of the shock waves as

compared with the WENO scheme [22]. Presumably, this should be attributed to the one-step framework of

the ADER approach.

On the finest mesh we begin to see the appearance of the Kelvin–Helmholtz instability (rolling) of the slip

surface. We remark that slip surfaces are physically unstable features of the flow, the converged solution of

which can only be obtained by solving the Navier–Stokes equations. See e.g. [39] for a numerical study of
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Fig. 1. Density convergence study for the double Mach reflection problem. Method: the ADER3-AD scheme. Meshes: 480 · 120 cells

(top), 960 · 240 cells (middle) and 1920 · 480 cells (bottom). 30 contour lines from 2 to 22.
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two-dimensional Rayleigh–Taylor instability. When we use the Euler equations, the viscosity is in fact the

numerical viscosity of the method and depends on the scheme and the mesh used. As the mesh is refined, no

limiting (converged) solution is found. However, for a given particular mesh the numerical solution may
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Fig. 2. Density convergence study for the double Mach reflection problem. Method: the ADER3-HLLC scheme. Meshes: 480 · 120

cells (top), 960 · 240 cells (middle) and 1920 · 480 cells (bottom). 30 contour lines from 2 to 22.
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exhibit features, typical of physically unstable flows, but with unknown viscosity. Therefore, more pro-

nounced instability of the solution (rolling of the slip surfaces) means smaller numerical diffusion of the

ADER3-AD and ADER3-HLLC schemes as compared to the ADER3-HLL scheme and the WENO

scheme of [22].
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Fig. 3. Density convergence study for the double Mach reflection problem. Method: the ADER3-HLL scheme. Meshes: 480 · 120 cells

(top), 960 · 240 cells (middle) and 1920 · 480 cells (bottom). 30 contour lines from 2 to 22.

V.A. Titarev, E.F. Toro / Journal of Computational Physics 204 (2005) 715–736 727
Figs. 7 and 8 show numerical results of the higher-order ADER4-HLL scheme for the same meshes. We

observe that the scheme produces the correct flow pattern on all meshes, with thin profiles of discontinu-

ities. Comparing Fig. 8 with that of methods with the lower-order piece-wise parabolic reconstruction (see
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Figs. 1–6 and [22]) it is seen that the rolling of slip surfaces is much more pronounced in the results of

ADER4-HLL scheme. Therefore, the ADER4-HLL scheme has significantly smaller numerical diffusion

as compared with the lower-order schemes.
XX
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4.3. Three-dimensional explosion test problem

Finally, we apply our schemes to the three-dimensional Euler equations (25) and solve the spherical

explosion test problem [30]. The initial condition defined on [�1:1] · [�1:1] · [�1:1] consists of two regions

of constant but different values of gas parameters separated by a sphere of radius 0.4:
Fig. 9.

for the
ðq,pÞ ¼
ð1:0,1:0Þ, r 6 0:4

ð0:125,0:1Þ, r > 0:4

�
, u ¼ v ¼ w ¼ 0, r2 ¼ x2 þ y2 þ z2: ð28Þ
The numerical solution is computed at the output time t = 0.25 on a sequence of refined meshes with 25, 51

and 101 cells in each coordinate direction. We use Ccfl = 0.3 for all runs. For this problem we obtain a ref-
erence radial solution by solving numerically the following one-dimensional Euler equations with a geomet-

rical source term:
o

ot

q

qV r

E

0
B@

1
CAþ o

or

qV r

qV 2
r þ p

ðE þ pÞV r

0
B@

1
CA ¼ � 2

r

qV r

qV 2
r

ðE þ pÞV r

0
B@

1
CA, ð29Þ
where Vr is the radial velocity. We use the Weighted Average Flux (WAF) method [28,30] on a very fine

mesh.
Figs. 9–11 show a comparison between the one-dimensional reference radial solution (solid line) and the

cell averages of the three-dimensional ADER3-AD solution (symbols) along the radial line that is coinci-

dent with the x-axis. We present distributions of gas density q and internal energy e = T/(c � 1) for x > 0.

The solution contains a spherical shock wave and a contact surface travelling away from the centre and a

spherical rarefaction wave travelling towards the origin (0,0,0). We observe that the scheme produce the

correct flow pattern with the correct values behind the shock wave and the contact surface. As the mesh

is refined, the numerical solution approaches the reference solution. No oscillations are present.

The results of theADER3-HLLCandADER3-HLL schemes are essentially the same and are thus omitted.

4.4. Cost comparison of the schemes

Our numerical experiments show that for the two-dimensional compressible Euler equations and piece-

wise parabolic reconstruction the third-order ADER schemes are faster than the WENO scheme roughly by
Spherical explosion test problem. Computed (symbol) and reference (line) solutions for density (left) and internal energy (right)

ADER3-AD scheme. A mesh of 25 · 25 · 25 cells is used.



Fig. 10. Spherical explosion test problem. Computed (symbol) and reference (line) solutions for density (left) and internal energy

(right) for the ADER3-AD scheme. A mesh of 51 · 51 · 51 cells is used.

Fig. 11. Spherical explosion test problem. Computed (symbol) and reference (line) solutions for density (left) and internal energy

(right) for the ADER3-AD scheme. A mesh of 101 · 101 · 101 cells is used.
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70%. The reason for this is twofold. Firstly, our scheme needs to perform the very costly characteristic pro-

jections and smoothness indicators computations in the reconstruction procedure only once during one

time step. Secondly, the ADER scheme uses the two-point integration rule to evaluate the numerical fluxes

whereas the WENO scheme in the cited reference uses the three-point Gaussian rule.

The gain in computational cost of ADER schemes over the WENO schemes with Runge–Kutta time

stepping is similar to that of the finite-difference WENO schemes with Cauchy–Kowalewski procedure over

the finite-difference WENO schemes with Runge–Kutta time stepping [17].

The fourth-order ADER schemes in two space dimensions are more expensive than the corresponding
third-order ADER schemes by a factor of three. This is due to substantially more expensive reconstruction

procedure and more complicated fluxes.

Secondly, we discuss the memory requirement of the schemes. The ADER schemes of any order effec-

tively need only two global arrays to store the vector of the conservative variables and the total sum of
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fluxes. The WENO schemes with the third order three-stage TVD Runge–Kutta method [23] need at least

three such arrays. Note that expensive memory transfers may be needed for the RK method in this case.

For the fourth-order five-stage SSP RK method [24] the memory requirements are substantially higher.

In summary, the memory requirement of the ADER schemes are significantly smaller than that of the

WENO schemes with RK time discretizations.
5. Conclusions

In this paper, we have extended the ADER approach to multidimensional non-linear systems of conser-

vation laws. We implemented schemes of third and fourth order of time accuracy (fifth and seventh order of

spatial accuracy, respectively) as applied to the compressible Euler equations of gas dynamics in two and

three space dimensions. We presented the numerical results which illustrate their very high order of accu-
racy as well as the essentially non-oscillatory property of the schemes. Comparisons with the state-of-art

WENO scheme [22] show that the ADER schemes are faster, more accurate and need less computer

memory.
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